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Introduction

Optimal Power Flow

Given a transmission network and a set of demands, what is the
cheapest way to (a) produce the required power and (b) transmit the
power to the corresponding nodes in the network.

Power flow must obey Kirchhoff’s law.

“Switching” lines (removing them from the network) may reduce
production costs.

Bus 3Bus 2

Bus 5Bus 6

Bus 1 Bus 4 ∼∼
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Introduction

The Transmission Switching Problem

DC Power Flow

Minimize
∑
j∈J
cj(pj)

subject to ∑
e∈E(.,i)

fe −
∑

e∈E(i,.)

fe +
∑
j∈N (i)

pj = Li ∀ j ∈ V

feze ≤ fe ≤feze ∀e
|fe − Be(θi − θj)| ≤Me[1− ze] ∀e
ze ∈ {0, 1}, pj ≥0, θi, fe free.
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Introduction

What is M?

Me is a large number. How large?

The Big-M constraint enforces the logic “if line ze is switched, then
the Kirchhoff’s law constraint between the adjacent buses can be
ignored” (the constraint becomes redundant).

This happens when Me ≥

max |fe − Be(θi − θj)|∑
e ′∈E(.,i)\e

fe ′ −
∑

e ′∈E ′(i,.)\e

fe ′ +
∑
j∈N (i)

pj = Li ∀ j ∈ V

fe ′ze ′ ≤ fe ′ ≤ fe ′ze ′ ∀e ′ 6= e
|fe ′ − Be ′(θi − θj)| ≤Me ′ [1− ze ′ ] ∀e ′ 6= e

ze ′ ∈ {0, 1}, pj ≥ 0, θi, fe ′ free.

4 / 21



Introduction

Choosing Values of M

Ideally one would want to use the smallest value for Me as possible,
but this requires solving an integer programming problem for each
transmission line.

Less ideally one would want to use a small value for Me as possible,
but this requires solving an linear programming problem for each
transmission line.

In practice, a single, large, value is used for every Me.
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Introduction

Consequences of a Bad M

Big-M Constraints

feze ≤ fe ≤feze ∀e (1)

|fe − Be(θi − θj)| ≤M[1− ze] ∀e (2)

f4,3 = 50

f4,5 = 50

f1,2 = 50

f1,6 = 50

Bus 3Bus 2

Bus 5Bus 6

Bus 1 Bus 4 ∼∼

Suppose demand at every non-generator
bus is 50.

The capacity of each line is 100.

The susceptance of all lines is 1.

6 / 21



Introduction

Consequences of a Bad M

Big-M Constraints

feze ≤ fe ≤feze ∀e (1)

|fe − Be(θi − θj)| ≤M[1− ze] ∀e (2)

f4,3 = 50

f4,5 = 50

f1,2 = 50

f1,6 = 50

Bus 3Bus 2

Bus 5Bus 6

Bus 1 Bus 4 ∼∼

In OPF solution,
f1,2 = f1,6 = f4,3 = f4,5 = 50,
f2,3 = f6,5 = 0.

Also z1,2 = z1,6 = z4,3 = z4,5 = 0.5,
z2,3 = z6,5 = 0.
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Introduction

Consequences of a Bad M

Big-M Constraints

feze ≤ fe ≤feze ∀e (1)

|fe − Be(θi − θj)| ≤M[1− ze] ∀e (2)

f4,3 = 50

f4,5 = 50

f1,2 = 50

f1,6 = 50

Bus 3Bus 2

Bus 5Bus 6

Bus 1 Bus 4 ∼∼

Constraints 2 look like

−M

2
≤ fe − Be(θi − θj) ≤

M

2
(3)

for lines with flow, and

−M ≤ fe − Be(θi − θj) ≤M (4)

for lines without flow.
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Introduction

Big M is Bad M

If M is large (which it is) these constraints are rarely going to be
binding.

Unless ze is close to one (in the LP relaxation), power flow
constraints are very weak.

ze is only close to one when the line is near capacity.

It can be shown that if the transmission network contains no cycles,
Kirchhoff’s constraints are not necessary.

The Kirchhoff constraints affect the LP relaxation only when several
lines are fixed to be on or near capacity (enough to form a cycle).
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Introduction

In summary

The current TS formulation is built on “Big-M”s. Because there are
so many important Big-M constraints, the current MILP formulation
of TS is not going to be solvable for any real sized network.

Heuristics are necessary (although there is recent work looking at
potentially different, Big-M-less, formulations).

A common approach (and one taken in this work) is to “pre-screen”
the list of transmission lines in order to identify which lines should be
considered “switchable”.
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Heuristics

Prescreening

Given a set, S of switchable lines, the relaxed TS (RTS) problem can
be written as:

zRTS = min
∑
g∈G

cg(pg)

Pg ≤ pg ≤ Pg∀g ∈ G,∑
e∈E(.,i)

fe −
∑

e∈E(i,.)

fe +
∑
j∈Gi

pj = Li ∀ i ∈ V,

−fe ≤ fe ≤ fe ∀e ∈ E− S,
fe = Be(θi − θj) ∀e = (i, j) ∈ E− S

−feze ≤ fe ≤ feze ∀e ∈ S
|fe − Be(θi − θj)| ≤MRTS

e [1− ze] ∀e = (i, j) ∈ S,
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Heuristics

Advantages of Prescreening

Fewer binary variables! Only |S | switching decisions. The size of the
set of switchable lines offers the user a “dial” to determine how
quickly the problem is solved. Larger sets lead to more accurate
solutions, but with the cost of additional computational time.

Less obviously is that the Big-M formulation can be much tighter if
several lines are not switchable. I.e., smaller values of Me can be
found for each edge. A tighter formulation should translate into faster
solving times.
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Heuristics

How to choose S?

We need to develop a fast way to identify which lines have the
greatest potential to reduce cost when switched. To do this, we first
attempt to identify (potentially) highly congested areas.

We do this by solving the OPF problem with no switching as well as
no capacity constraints on the transmission lines.

If this gives a solution where no lines are over capacity, then the
solution is feasible. Moreover, no switching is necessary!

Assume the solution is not feasible. Let V be the set of transmission
lines whose capacities are violated in this solution.
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Heuristics

Concentric Relaxation and S

We want S to include transmission lines that, when switched, will
divert flow away from V. We generate these by looking at “nearby”
edges (borrowing an idea by Zaborszky et al.).

The general idea: If line e is over capacity, and e ′ is nearby e, then
line e ′ is labeled switchable (is added to S).

How do we define ”nearby”? There are lots of ways, we can use the
network distance, geographic distance, etc. We define “nearby” by
running many different simulations investigating the impact that
switching one line has on another.
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Heuristics

Finding Neighborhoods of a Line

Defining Nearby

Let Nε,δ(e) be the “neighborhood” of edge e, consisting of all edges
whose flow changed by more than ε% in more than δ% of the simulations.
A transmission line is in its own neighborhood.

Nε,δ(e) is computed by:

Nε,δ(e) =
{
e ′ ∈ E

∣∣ ∑
s∈S

1{
|fse ′ − f

s
e ′,−e|

|fse ′ |
≥ ε

100
} ≥ δ|S|

100

}
,
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Heuristics

Example: RTS-96

Table: N0.7,0.7 For RTS-96

# Adj. Buses Lines in Relaxation
1 (101,102)
2 (101,103) 1
3 (101,105) 1 2
4 (102,104) 1 3 8 9 10 16
5 (102,106) 1 4 8 10 16
6 (103,109) 1 5 10
7 (103,124) 6
8 (104,109) 6 7 15 16 26 27
9 (105,110) 8
10 (106,110) 1 9 10
11 (107,108)
12 (107,203) 11 12 13 14 16 18 37 52
13 (108,109) 12
14 (108,110)
15 (109,111)
16 (109,112) 15
17 (110,111)
18 (110,112) 17 18
19 (111,114) 18
20 (112,113) 15 16 17 18 19 33 34
21 (112,123) 20
22 (113,123) 16 20 21 37
23 (113,215) 20 22 37
24 (114,116) 16 20 23 37
25 (115,116) 6 15 16 17 18 19 24 33 34
26 (115,121) 6 25 26 28 30 32
27 (115,124)
28 (116,117) 6 7 15 16 26 27
29 (116,119) 26 28
30 (117,118) 16 18 29 33 34 37
31 (117,122) 26 30
32 (118,121) 26 30 31 32
33 (119,120) 26 28 30 32
34 (120,123) 33 34
35 (121,122) 33 34
36 (123,217) 26 30 31 32 35
37 (201,202)
38 (201,203) 38
39 (201,205) 39
40 (202,204) 38 40 45 46 47 52 54
41 (202,206) 38 41 45 47 52 54
42 (203,209) 38 42 47 54
43 (203,224) 43 52
44 (204,209) 43 44 52 62
45 (205,210) 45
46 (206,210) 38 46 47 54
47 (207,208)
48 (208,209) 38 45 47 48 49 50
49 (208,210)
50 (209,211)
51 (209,212) 51 52
52 (210,211)
53 (210,212) 53 54
54 (211,214)
55 (212,213) 51 52 53 54 55 68 69
56 (212,223) 52 54 56
57 (213,223) 52 54 57 68 69
58 (214,216) 52 54 56 57 58 68 69
59 (215,216) 37 43 51 52 53 54 55 59 68 69
60 (215,221) 37 60 65
61 (215,224) 61 65
62 (216,217) 43 44 52 62
63 (216,219) 37 61 63 65
64 (217,218) 52 54 64 68 69
65 (217,222) 65
66 (218,221) 65 66 70
67 (219,220) 37 61 65 67
68 (220,223) 68 69
69 (221,222) 68 69
70 (301,302) 65 66 67 70
71 (301,303) 72
72 (301,305) 72 73
73 (302,304) 72 74 79 80 81 86 88
74 (302,306) 72 75 79 81 86 88
75 (303,309) 72 76 81 88
76 (303,324) 77
77 (304,309) 77 78 85 86 88 96 102 103
78 (305,310) 79
79 (306,310) 72 80 81 88
80 (307,308)
81 (308,309) 26 37 38 47 52 54 82 83 84 86 88
82 (308,310)
83 (309,311)
84 (309,312) 85 86
85 (310,311)
86 (310,312) 87 88
87 (311,314)
88 (312,313) 85 86 87 88 89 102 103
89 (312,323) 86 88 90
90 (313,323) 86 88 91 102 103
91 (314,316) 86 88 90 91 92 102 103
92 (315,316) 77 85 86 87 88 89 93 98 102 103
93 (315,321) 77 86 94 95 97 99
94 (315,324) 95
95 (316,317) 77 78 85 86 88 96 102 103
96 (316,319) 95 97
97 (317,318) 86 88 98 102 103
98 (317,322) 95 97 99
99 (318,321) 95 99 100 104
100 (319,320) 95 97 99 101
101 (320,323) 102 103
102 (321,322) 102 103
103 (325,121) 95 97 99 100 104
104 (318,223) 26 33 34 36 37 52 68 69 86 95 97 102 103 105
105 (323,325) 26 33 34 37 52 68 69 71 86 97 102 103
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Heuristics

The Algorithm

For a given ε and δ, let S be the union of all neighbodhoods in V.
Solve the restricted TS problem where only lines in S are switchable.

Pros:

By varying the values of ε and δ, you can quickly adjust the level of
difficulty / precision of your problem.
The neighborhoods are computed in advance, so determining the set of
switchable lines of very fast

Cons:

The solution is not guaranteed to be optimal
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Results

Computational Results: RTS-96

How do the values of ε and δ effect the speed and the quality of the
TS problem?
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Figure: Size and Quality of Nε,80 for RTS-96
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Results

Computational Results: IEEE-662

How do the values of ε and δ effect the speed and the quality of the
TS problem?
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Figure: Size and Quality of Nε,80 for IEEE 662
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Results

Speedups from Prescreening

The full RTS-96 instance is solved by CPLEX in fractions of a second,
so there is no real point to performing prescreening.

But for IEEE 662:

Table: Computational Times (s) for IEEE-662 with δ = 80

ε 0 10 20 30 40

Time (s) (4.80%) (3.02%) (3.02%) (0.55%) 2927

ε 50 60 70 80 90 100

2820 (0.31%) (0.42%) 1732 411 362
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Results

Conclusion

The TS problem is a hard integer programming problem!

Prescreening strategies like this one can be effective at identifying
lines whose switching can be most impactful.

Prescreening can be used to reduce the size of the TS problem (in
number of binary variables) by up to an order without sacrificing the
objective function by that much.
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